TECHNO INDIA – BATANAGAR

(DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018

QUESTION PAPER DETAILS					
Course	Stream	Semester	Subject	Paper Code	Chapter
B. Tech	ECE	4 th	ET Theory & Transmission Lines	EC-401	1.Vector Calculus

Paper Setter Detail					
Name Designation Mobile No. E-mail ID					
Shyamal Mukhopadhyay	Assistant Professor	9432183958	Shyamal.mukherjee@tib.edu.in		

MCQ: Type-1	(Maximum marks	to be allotted =1
-------------	----------------	-------------------

- 1. When the operator ∇ operates on a vector or on a scalar, it is an operation of
 - a) Differentiation
- b) Integration
- c) Multiplication
- d) Division
- 2. The angle between $\vec{\nabla} \varphi$ and a surface where $\varphi = constant$ is
 - a) 0°
- b) 45°
- c) 60°
- d) 90°
- 3. Magnitude of $\nabla \varphi$ is equal to the maximum space rate of change of φ in a direction
 - a) 60° with the surface where $\varphi = constant$.
 - b) 90° with the surface where $\varphi = constant$.
 - c) 180° with the surface where $\varphi = constant$
 - d) 90° with the surface where φ can vary from point to point.
- 4. Flux of a vector field \vec{E} through a surface of area \vec{a} is
 - a) $\vec{E} X \vec{a}$
- b) $\vec{E} + \vec{a}$
- c) $\vec{a} X \vec{E}$
- d) $\vec{a} \cdot \vec{E}$

- 5. Which one of the following is true
 - a) Flux is a vector but flux density is a scalar
 - b) Flux is a scalar but flux density is a vector
 - c) Both are scalar
 - d) Both are vector
- 6. Divergence of a vector field is a
 - a) Scalar quantity

- c) Both
- d) none

- 7. Curl of a vector field is a
 - a) Scalar quantity
- b) Vector quantity

b) Vector quantity

- c) Both
- d) none

Short Question (Type-2): (Maximum marks to be allotted =2)

- 1. Find out the magnitude of grad of a scalar field.
- 2. Write down the mathematical expression for the operator "Nabla"
- 3. When a vector field is called "Solinoidal"
- 4. When a vector field is called "Conservative"
- 5. When a vector field is called "Irrotational"
- 6. Write down the mathematical definition of Laplacian of a vector \vec{A}

Subjective Question (Type-3): (Maximum marks to be allotted =3)

- 1. If a vector field \vec{A} can be expressed as gradient of a scalar field, prove that line integral of that vector field along a closed path is zero.
- 2. Find the rectangular coordinates of the point ($\rho = 1, \varphi = 1, z = 1$)
- 3. Find the cylindrical coordinates of the point (x=1, y=1, z=1) given in rectangular coordinates.

- 4. Consider a vector field defined by the equations A_x=1, A_y=2. Find out the divergence and curl of the vector field. Plot the field.
- 5. Explain briefly the difference between divergence and curl of a vector field in terms of their physical significance.

Broad Question (Type-4): (Maximum marks to be allotted =5)

- 1. Consider a vector field defined by $A_x = y + 10$, $A_y = 0$. Find out the divergence and curl of that vector field. Map the vector field.
- 2. Prove that the volume integral of divergence of a vector field \vec{A} over a volume is equal to the surface integral of vector \vec{A} over the surface bounding the volume.
- 3. Evaluate the amount of maximum line integral at any point in a vector field around a closed curve per unit area basis.
- 4. Prove that a vector field which is the gradient of something has no curl.
- 5. Prove that a vector field which is the curl of something has no divergence.
- 6. Prove that Curl of Curl \vec{F} = grad div \vec{F} Laplacian \vec{F}

QUESTION PAPER DETAILS					
Course	Stream	Semester	Subject	Paper Code	Chapter
B. Tech	ECE	4 th	ET Theory & Transmission Lines	EC-401	Electrostatics, Magnetostatics & Electrodynamics

Paper Setter Detail					
Name Designation Mobile No. E-mail ID					
Shyamal Mukhopadhyay	Assistant Professor	9432183958	Shyamal.mukherjee@tib.edu.in		

MCQ: Type-1 (Maximum marks to be allotted =1)

1.	Equipotential surfaces	about a point charge are	in the forms of	
	a) Spheres	b) Planes	c) Cylinders	d) Cubes

- 2. An electric charge Q is placed in a dielectric medium. Which of the following quantities are independent of the dielectric constant ϵ of the medium?
 - a) Electric potential V and electric field intensity E
 - b) Electric potential V and displacement ψ
 - c) Electric field intensity E and displacement density D
 - d) Displacement density D and Displacement ψ .
- 3. For a static electric and magnetic field, which of the following represents the correct form of two of Maxwell's equations?

a)
$$\vec{\nabla} X \vec{E} = 0 \& \vec{\nabla} . \vec{B} = 0$$

b) $\vec{\nabla} X \vec{E} = 0 \& \vec{\nabla} X \vec{B} = 0$
c) $\vec{\nabla} . \vec{E} = 0 \& \vec{\nabla} . \vec{B} = 0$
d) $\vec{\nabla} . \vec{E} = 0 \& \vec{\nabla} X \vec{B} = 0$

- 4. If any vector field \vec{B} is related to another vector field \vec{A} through $\vec{B} = \vec{\nabla} X \vec{A}$, which of the following is true
 - a) $\oint \vec{B} \cdot \vec{dl} = \oiint \vec{A} \cdot \vec{ds}$ b) $\oint \vec{A} \cdot \vec{dl} = \oiint \vec{B} \cdot \vec{ds}$ c) $\oint \vec{B} \cdot \vec{dl} = \oiint \vec{A} \times \vec{As}$ d) $\oint \vec{A} \cdot \vec{dl} = \oiint \vec{B} \times \vec{ds}$
- 5. Consider a closed surface S surrounding a volume V. If \vec{r} is the position vector of a point inside S, with \hat{n} , the unit normal on S, the value of the integral $\oiint 5\vec{r} \cdot \hat{n} \, dS$ is

a) 6V b) 9V c) 15V d) 10V

6	i. The Maxwell's equati	on $\overrightarrow{\nabla} X \overrightarrow{H} = \overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t}$ is	based on	
	a) Coulomb's law	b) Gauss's law	c) Faraday's law	d) Ampere's law
7	. The characteristic im	pedance of free space ir	n ohm is	
	a) 300 Ω	b) 362 Ω	c) 372 Ω	d) 377 Ω
8	B. The value of magn	etic vector potential du	ue to an infinitesimally	small current element,
	evaluated at infinite of	listance from it is		
	a) 0 b) 1	c) ∞ d) de	ependent on the strengt	h of the current element
9	. Maxwell inserted the	expression for displacer	ment current J_D in Ampe	re's law to satisfy
	a) Ampere's law for	time varying case	c) Gauss's	Law
	b) Faraday's law		d) Continuit	y equation
1	0. The cause of polariza	ation in electromagnetic	wave is	
	a) Refraction	b) Reflection	c) Longitud	inal nature of EM wave
	d) Transverse na	ture of EM wave		
1	1. The plane wave $\vec{E} =$	$50\sin(10^8t + 2z)\widehat{a_v} \text{ V/s}$	m , (where $\widehat{a_{m{ u}}}$ is the un	it vector in y-direction) is
	travelling along	, , ,	,	•
	a) +y direction	b) – y direction	c) + z direction	d) – z direction

Short Question (Type-2): (Maximum marks to be allotted =2)

- 1. State & explain Lenz's law.
- 2. Write down the integral form of Maxwell's equations for static electric and magnetic field.
- 3. How vector magnetic potential can be defined?
- 4. Write down the conditions of normal component and tangential component of displacement densities when an EM wave meet a boundary between two different medium.
- 5. Write down the general E.M wave equation in free space and explain the symbols used.
- 6. What do you mean by intrinsic impedance of a medium? What is its value in ohm for free space?
- 7. Express a sinusoidal variation of voltage in phasor form .

Subjective Question (Type-3): (Maximum marks to be allotted =3)

- 1. What is Displacement current? How the concept of displacement current is introduced in Amperes law in case of time varying field?
- 2. Show that, in a circuit containing a capacitor, the displacement current flowing between the capacitor plates is exactly the same in magnitude of conduction current flowing through the other part of the circuit.
- 3. Calculate the ratio of conduction current density to displacement current density in a imperfect conductor having electrical conductivity σ and relative permittivity ϵ .
- 4. What is a uniform plane wave. How do you describe it mathematically?
- 5. Show it dimensionally that the ratio of \vec{E} & \vec{H} in a uniform plane wave represents an impedance.
- 6. Prove that in a uniform plane wave, $\vec{E} \& \vec{H}$ are always perpendicular to each other.
- 7. Find out the changed form of wave equation in case of sinusoidal time variation, when the medium is neither perfect dielectric nor perfect conductor.
- 8. Why the polarization of any electromagnetic wave is defined by the behaviour of the electric vector only? Why the behaviour of H vector is not taken into account?
- 9. Define loss tangent in a lossy dielectric.

Broad Question (Type-4): (Maximum marks to be allotted =5)

- 1. Find out the conditions of four field vectors \vec{E} , \vec{D} , \vec{H} , \vec{B} , when they meet a boundary between two media.
- 2. Derive the general law that electric field vector \vec{E} must obey in an electromagnetic wave in free space condition, when the medium is perfectly dielectric
- 3. Find out the relation between \vec{E} & \vec{H} in a uniform plane wave in loss less (Perfect) dielectric medium.
- 4. How do you define propagation constant for a lossy dielectric medium? Find out the expression for the same. How it is related with the intrinsic impedance of the medium?
- 5. What do you mean by skin depth? The depth of penetration of electromagnetic wave in a medium having conductivity σ at a frequency of 1 MHz is 25 cm. What will be the depth of penetration at a frequency of 4 MHz?
- 6. The electric field component of an EM wave propagating through a medium (characterized by $\epsilon=2\epsilon_0$ $\mu=8\mu_0$ and $\sigma=0.05$ S/(m)) is given by $\vec{E}(z,t)=10e^{-\alpha z}\cos(2\pi\,X\,50\,X\,10^6\,t$ βz) \hat{x} V/meter. Compute (i) Propagation constant γ (ii) Attenuation constant, α and Phase constant, β .

	QUESTION PAPER DETAILS					
Course	Stream	Semester	Subject	Paper Code	Chapter	
B. Tech	ECE	4 th	ET Theory & Transmission Lines	EC-401	3. Transmission Lines	

Paper Setter Detail					
Name Designation Mobile No. E-mail ID					
Shyamal Mukhopadhyay	Assistant Professor	9432183958	Shyamal.mukherjee@tib.edu.in		

MCQ: <u>Type-1</u> (Maximum marks to be allotted =1)

1.	If the load imped	ance of one half-	wavelength is 5	$0+\mathrm{j}$ 150 Ω , its in	iput impedance is
	a) $50 - j 150 \Omega$	b) 50 + j 150 Ω	c) 1+j 200 Ω	d) 100 + j 2 Ω	

2. A sinusoidal voltage with a wavelength of 100 cm is applied to a transmission line along which the velocity of propagation of the wave is 2.9 X108 m/s. The frequency of the source is

	a)	2.9 MHz	b) 2.9 GHz	c) 0.29 GHz	d) 0.29 GHz		
3.	If th	e magnitude	of the reflection	coefficient on	a transmission	line for a	giver

n load is 1/3, VSWR is

c) 1.3 a) 3, b) 2 d) 0.5

4. A 50Ω transmission line is connected to a load impedance yielding a VSWR of unity, the load impedance is

a) 50 Ω b) 100 Ω c) 1 Ω d) 0Ω

5. If the reflection coefficient at a point on a transmission line is -0.5, the transmission coefficient is

d) 0

a) 0.5 c) 1.0 6. If maximum and minimum voltages on a transmission line are 4 V and 2V respectively,

VSWR is a) 0.5 b) 2 c)1 d) 8

b) -0.5

- 7. If the sending voltage and currents on a transmission line are 200V and 2 amp for a given load, the input impedance is a) $100~\Omega$ b) ∞ c) $0.01~\Omega$ d) $200~\Omega$
- 8. A line of length $\it l$ has characteristic impedance $\it Z_{\rm 0}$. The line is cut into half. The value of characteristic impedance becomes
 - a) $\frac{Z_0}{2}$ b) $\frac{Z_0}{4}$ c) Z_0
- 9. When the reflection coefficient equals $1 \angle 0^{\circ}$, the value of the VSWR will be

Short Question (Type-2): (Maximum marks to be allotted =2)

- 1. Draw the equivalent circuit of a transmission line and simplify it for radio frequency application.
- How do you define the characteristic impedance of a transmission line? Write down the expression for characteristic impedance of a loss less transmission line with the meaning of symbols used.
- 3. A transmission line section shows an input impedance of 36 Ω and 64 Ω respectively, when short circuited and open circuited. What is the characteristic impedance of the transmission line?
- 4. Why a quarter wave transformer can be used for accurately matching purely resistive loads only?
- 5. What is SWR in a transmission line? How it is related to the power loss?
- 6. State the difference between the lumped elements and distributed elements.
- 7. Why parallel lines are never used in microwave?
- 8. What is the relation between Neper and dB for attenuation?

Subjective Question (Type-3): (Maximum marks to be allotted =3)

- 1. Derive the relation between the SWR and Reflection coefficient.
- 2. Explain with diagram, how non-uniform waves are generated and flows in a coaxial cable transmission line.
- 3. What are the main features of Loss less transmission line in terms of characteristic impedance and velocity of propagation.

Broad Question (Type-4): (Maximum marks to be allotted =5)

- 1. Explain qualitatively, how standing wave forms in an un-matched transmission line. Show with diagram how voltage antinode and current node takes place at a distance $\frac{\lambda}{4}$ apart from the load end when short circuited.
- 2. How propagation constant is defined in a parallel wire transmission line? Derive the expression of propagation constant γ for a lossless transmission line.
- 3. Find out the value of reflection coefficient, Γ , when load end is short circuited, Open circuited and terminated by a load of double of the line characteristic impedance.