Question Paper Details								
Course	Stream	Semester	Subject	Paper Code	Chapter			
B.TECH	ECE	4 th	Digital Electronics & Integrated Circuits	EC-402	1 Data and number systems, Boolean algebra, Various Logic gates			

Paper Setter Details					
Name	Designation	Mobile No.	Email ID		
SALINI BOSE	Assistant Professor	8777498093	Saline.bose@gmail.com		

[Maximum marks: 1]

MCQ [Type-1]

1.	Find the Decima	al number repre	sentation of (101	101.10101)2			
	a) 42.565	b)45	.6562	c) 41.625	d) 49.5		
2.	Convert (13.656	$(525)_{10}$ to binary					
	a)1010.1010	b) 1111	1.01010	c)1101.10101	d) none		
3.	Convert (627.45) ₈ into its equiv	alent decimal nu	mber.			
	a)470.75	b) 407.57	c) 704.57	d) 704.75			
4.	Convert (387.51) ₁₀ into octal					
	a)603.4631	b) 603.1364	c)306.136	4 d)306.46	531		
5.	Find the equival	ent binary num	ber of (427) ₈				
	a)100111010	b) 100111	001 c)10001	L0111 d) nor	ne		
6.	5. Find the octal number of $(1011111.0010111)_2$						
	a)574.134	b)137.134	c)515.2	7 d) 571.1	34		
7.	What is the equ	ivalent hexaded	imal number of (253.625) ₁₀ ?			
	a)FD.A	b) 1513.10) c) F13.A	d) 15D.1	0		
8.	Convert (BAD) ₁₆	into decimal nu	ımber				
	a)2898	b) 2889	c) 2998	d) 2989			
9.	Convert (BED6)1	₆ into binary nu	mber				
	a) 101111101	1010110 b) 10:	100110101 c) 1	101010101010 d	l) none		
10.	Convert (CAFE) ₁	6 into octal num	ber				
	a) 155476	b) 14547	c) 17558	d) 145376			
11.	Convert (110102	1.10101)₂ into h	exadecimal num	ber			
	a)35.A8	b) 65.51	c) 53.108	d) 35.108			
12.	A particular nun	nber system hav	ving base B is give	en as (V41) _B =5 _{10.} \	What is the value of B?		
	a)5	b) 6	c)7	d)8			

13.	Find out the corr	ect answer:				
	a)1 bit= 8byte	b) 1byte =8 bit	c) 1Nibble=4bi	t d) 1Byte =4 Nibble	e e) b & c	
14. \	What is the value	of base x for (128)) ₁₀ =(1003) _x ?			
	a)5	b)6	c)7	d)8		
15. (base b?	Consider X=(54) _b ,	where b is the ba	se of the numbe	r system. If √x = 7 the	n what is the value of	
	a)5	b)6	c)8	d)9		
16. The	equivalent 2's co	mplement form of	f -8 is			
	a) 1001000	b) 1000	c) 01001	d)11000		
17. How	v many number c	of Boolean express	ions can be form	ned using 4 variable ?		
	a)32	b) 256	c)16	d)64K		
18. 110 fc	18. 11001,1001 and 111001 correspond to the 2's complement representation of which one of the following sets of numbers?					
	a)-7,-1,-57	b) -6,-6,-6	c)-7,-7,-7	d)-25,-9,-57		
19. What	t is decimal equiv	alent of BCD 1101	1.1100 ?			
i	a) 22.0	b) 22.2	c) 20.2	d) 21.2		
20. What	t is BCD represent	tation of a decima	l number 764?			
i	a)01010101010101	b)111110100	c)011101100100) d) none		
21. The	excess 3 code of o	decimal number 20	6 is			
i	a) 0100 1001	b) 01011001	c) 1000 1001	d) 01001101		
22. The e	excess-3 code of d	lecimal 7 is repres	ented by			
i	a) 1100.	b) 1001.	c) 1011.	d) 1010.		
23.8421	is a					
ä	a) Non-weighted	code b) weig	hted code	c) complementary co	ode	
24. The c	code where all suc	ccessive numbers	differ from their	preceding number by	single bit is	
ä	a) Binary code.	b) BCD.	c) Ex	cess – 3.	d) Gray	

25. For the ring oscillator shown in figure, the propagation delay of each inverter is 100picoseconds. What is the fundamental frequency of the oscillator output?

a) 10Mhz b) 100Mhz c) 1Ghz d) 2Ghz

26. F=A'B'C' + A B' C' + AB' C + ABC' + ABC) . Express it as POS .

- a) F = Π (1, 2, 3) b) F = Π (1, 2, 3, 4, 5)
- c) F = Π (0, 5, 6) d) F = Π (0, 6, 7)

27. A bubbled AND gate is equivalent to

a) OR gate	h) NAND gate	c) NOR gate	d) X-OR gate
a) OR gale	D) NAND gale	C) NOR gale	u) A-OR gale.

28.

А	В	С	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

What is the correct boolean expression of the truth table?

a)B(A+C)(A'+C')

b) B(A+C')(A'+C) c) B'(A+C')(A'+C) d) B'(A+C)(A'+C')

29. Find the correct expression for the given switching circuits.

Short Question [Type-2]	[Maximum ma

- 1. Determine the 7's complement of the octal number 5674.
- 2. Find the 8's complement of an octal number 2675.
- 3. What is the one's complement representation of a binary number 101101?
- 4. What is the two's complement representation of a binary number 101101.011 & 110101.00100
- 5. Find out the (EOB)_H-(ABF)_H
- 6. Find the binary sum of 101101 & 110110
- 7. Subtract (101101)₂ from (110110)₂
- 8. Determine the value of

```
a) (243)_8 + (547)_8
                               b) (743)<sub>8</sub>-(562)<sub>8</sub>
                                                             c) (ADD)_{16}+(BAD)_{16} d) (9653)_{16}-(2789)_{16}
```

- 9. Subtract 17 from 45 using 2's complement method.
- 10. Subtract decimal number 22 from 17 using 8bit 2's complement method.

11. Subtract 26 from 14 using 1's complement method

12. Subtract 14 from 15 using 1's complement.

13. What will be the range of signed decimal numbers that can be represented by 6 bit 1's complement form?

14. 2's complement representation of a 16 bit number is FFFF. Its magnitude in decimal representation is what?

15. What will be the value of 2's complement of $(24)_{10}$?

16. How many number of bytes are required to represent the decimal number 1856732 in packed BCD number ?

17. Find out the BCD addition of a) 24 + 26 b) 42+ 72 c) 46+ 64

18. Design a circuit for : a) BCD to Excess-3 coder b) BCD to 7 segment decoder driver c) excess 3 code to BCD code using minimum number of logic gates.

19. Convert $(1011)_2$ to equivalent gray code and $(1101)_G$ to equivalent binary code.

20. For the given circuit ,find the output variable Y if input variables are A,B,C and D

21. What is the Boolean expression for the shaded area in the Venn diagram?

22. How many NOR gates are required to implement (A+B).(C+D)?

23. The voltage waveforms shown in Fig.1 are applied at the inputs of 2-input AND and OR gates. Determine the output waveforms.

Subjective question [Type-3]

[Maximum marks: 3]

- 1. State and prove Demorgan's laws.
- 2. Explain the different Boolean laws and theorems with example.
- 3. What are the differences between duality and complement?

Broad Question [Type-4]

[Maximum marks: 5]

1.What are universal gates. Construct a logic circuit using NAND gates only for the expression x = A . (B + C).

- 2. Simplify using k-map in SOP form : f (A, B, C, D) =∑m(1, 2, 4, 5,9,10) + ∑d (6,7,8,13)
- 3. Simplify the function using K-map and implement the result in AND –OR logic:

 $F(A,B,C,D) = \sum m(0,1,2,4,5,6,8,9,12,13,14)$

- 4. What will be the output expression F, where F is high if and only if the majority of inputs are high?
- 5. What is the Boolean expression for the output of the logic circuit?

6. Two products are sold from a vending machine, which has two push buttons P1 and P2 .When a button is pressed ,the price of the corresponding product is displayed in a 7- segment display.

If no button are pressed, 0 is displayed, signifying Rs.0/-

If only P1 is pressed,2 is displayed, signifying Rs.2/-

If only P2 is pressed,5 is displayed, signifying Rs.5/-

If both P1 and P2 are pressed ,E is displayed, signifying error

The names of the segments in the 7 segment display and the glow of display for 0,2,5,E are shown below.

Consider:

i) Push button pressed / not pressed is equivalent to logic 1/0 respectively

ii) A segment glowing/not glowing in display is equivalent to logic 1/0 respectively.

If segment a to g are considered as functions of P1 and P2, then which of the following is correct?

a)g=P1'+P2,d=c+e b) g=P1+P2,d=c+e c) g=P1'+P2,e=b+c d) g=P1+P2,e=b+c

7. Simplify the following Boolean function:

i)AB + B(B + C') + B'C ii) C'F + F(A + B') + C iii)A+A'B+A'B'C+A'B'C'D + A'B'C'D'E+.....

Question Paper Details						
Course	Stream	Semester	Subject	Paper Code	Chapter	
B.TECH	ECE	4 th	Digital Electronics & Integrated Circuits	EC-402	2 Combinational circuits,Memory Systems	

Paper Setter Details						
Name	Designation	Mobile No.	Email ID			
SALINI BOSE	Assistant Professor	8777498093	Saline.bose@gmail.com			

MCQ [Type-1]

[Maximum marks: 1]

1. A serial adder requires

a) one half adder b) two full adders c) one full adder d) one multiplexer

2. The final carry output equation of carry look ahead adder is

a) $C_{n+1}=P_nC_n+G_n$ b) $C_{n+1}=P_n+C_nG_n$ c) $C_n=P_n+C_nG_n$ d) $C_n=P_nC_n+G_n$

3. If A and B are the inputs of a half adder, the sum is given by

	a) A AND B	b) A OR B	c) A XOR B	d) A EXOF
--	------------	-----------	------------	-----------

4. Half-adders have a major limitation in that they cannot

a) Accept a carry bit from a present stage b) Accept a carry bit from a next stage

c) Accept a carry bit from a previous stage d) None of the Mentioned

- 5. The difference between half adder and full adder is
 - a) Half adder has two inputs while full adder has four inputs
 - b) Half adder has one output while full adder has two outputs
 - c) Half adder has two inputs while full adder has three inputs

d) All of the Mentioned

6. The output of Full adder is represented as

```
a)Sum=∑m(1,2,4,7),Carry=∑m(3,5,6,7)
```

b) Sum=∑m(1,2,4,7),Carry= AB+(A EXOR B)C

c)Sum=A (EXOR) B (EXOR) C, Carry=∑m(3,5,6,7) d) all

7. To make a full adder we need

	a)EXOR gate=	2,AND gate=2, C	OR gate=1	b) EXOR gate	e=3,AND gat	e=2, OR gate=1	
	c) EXOR gate=	=2,AND gate=3, (OR gate=1	d) EXOR gate	e=1,AND gat	e=2, OR gate=3	
8. /	A decoder with e	enables input car	n be used as	5			
	a) encoder	b) demultiple	exer	c) comparator	. d) d	lecoder	
9. N	Multichannel sigi	nal can be transr	nitted throu	igh a single ch	annel by usi	ng	
	a)encoder	b) demultiple	exer	c) comparator	· d) r	nultiplexer	
10.	The number of 2	2 to 4 line decod	er are used	to make a 4 to	o 16 line dec	oder is	
	a) 4	b) 5		c)6	d)7		
11.	The number of 2	2X1 MUX and	4x1 to mak	e a 256X1 MU	IX is		
	a) 6,16	b) 255,85		c)58,552	d) (54,16	
12.	How many poss	ible outputs wou	uld a decode	er have with a	6-bit binary	input?	
	a) 32	b) 64	c) 1	28	d) 16		
13.	A 4:16 decoder	can be construct	ted (with er	nable input) by	<i>ı</i> :		
	a)using four 2:4	decoder b) ເ	using five 2:4	4 decoder	c) using tv	vo 3:8 decoder	
14.	Parity check bit	coding is used fo	or				
	a) Error correct	ion b) Error det	ection c) Er	ror correction	and detecti	on d) None of the abo	ve
15.	The memory ,wł	nich is ultraviolet	erasable ar	nd electrically	programma	ble is	
	a)RAM	b)EEROM	c)PRC	DM d	EPROM		
16. rate	16. A 1-bit full adder takes 20ns to generate carry out bit and 40ns for the sum bit.What is the maximum rate of addition per second when four 1bit full adder are cascaded?						
	a)10 ⁷	b) 1.25x10 ⁷	c) 6.25x 10	0 ⁶ d) 10)5		
17.	What is the nun	nber of select lin	es required	in a single inp	ut and n out	put DEMUX?	
	a) 2	b) n	c) log₂n	d) 3			

18. A 4:16 decoder can be constructed (with enable input) by:

a)using four 2:4 decoder
b) using five 2:4 decoder
c) using two 3:8 decoder
19. What will be the output function :

1.What are differences between combinational and sequential circuits?

2. Explain a 2 bit comparator with diagram.

3. Design a half adder using 2 to 4 decoder with additional logic gates, if required.

4. Design a half subtractor using 2 to 4 decoder with additional logic gates, if required.

5. How many minimum number of 2:1 MUX are required for implementing the Half Adder and Half Subtractor?

Subjective question [Type-3]

1.Explain the operation of Full adder.

- 2. Design a Full adder using 3 to 8 decoder with additional logic gates, if required.
- 3. Design a Full subtractor using 3 to 8 decoder with additional logic gates, if required.
- 4. Write a short note on: Even Parity Generator and Checker
- 5. Explain and design a look ahead carry adder.

6. What is parallel adder? Draw and explain block diagram for 4 bit parallel adder. 7. Write the differences between ROM, RAM, EPROM, EEROM.

- 8. Write a short note on: EPROM
- 9. Write the differences between SRAM and DRAM.
- 10. Write the differences between RAM and ROM.

Broad Question [Type-4]

[Maximum marks: 5]

- 1. Design a full adder with two half adders and explain it.
- 2. Design a full subtractor with two half subtractor and explain.
- 3. Design a full subtractor using decoder and necessary gates.
- 4. Design a Full adder using necessary Multiplexer.
- 5. Design a Full subtractor using necessary Multiplexer.
- 6. Implement $f(A,B,C)=\sum m(0,1,4,6,7)$ using MUX, taking A,B as select line.
- 7. Implement F(A,B,C,D)=∑m(0,1,3,5,7,8,9,11,12,14) in Multiplexer.
- 8. Implement F(A,B,C)= A+BC in a Multiplexer.
- 9. Explain how a Multiplexer is used as a universal circuit.
- 10. Implement the following Boolean equations using PLA device :F= $\sum m(1,3,7,11,13)$
- 11. Implement BCD to Excess-3 code conversion using ROM .
- 12. It is desired to generate the following three Boolean functions:

i) F1: a b' c+ a' b c'+ b c ; ii) F2= a b' c + a b +a' b c'

By using an OR gate array as shown below, where P1 to P3 are the product terms in one or more of the valuables a, a' ,b ,b' ,c, c'

Find out the terms P1,P2 and P3

13. What is a digital comparator? Explain the working of a 4-bit digital comparator .

14. Implement the logic function $f=\sum m(0,1,3,5,7)$ by using ROM.

Question Paper Details							
Course	Stream	Semester	Subject	Paper Code	Chapter		
B.TECH	ECE	4 th	Digital Electronics & Integrated Circuits	EC-402	3 Sequential Circuits		

Paper Setter Details				
Name	Designation	Mobile No.	Email ID	
SALINI BOSE	Assistant Professor	8777498093	Saline.bose@gmail.com	

MCQ [Type-1]

[Maximum marks: 1]

1. Which flip-flop acts as a buffer?

a) D flip-flop b) SR flip-flop c) T flip-flop d) JK flip-flop

2. The characteristic equation of T flip-flop is

a)
$$Q_{n+1} = T'Q_n + TQ_n'$$
 b) $Q_{n+1} = TQ_n + T'Q_n'$ c) $Q_{n+1} = TQ_n$ d) $Q_{n+1} = TQ_n'$

3. Master slave f/f has the characteristic that

a)change in the input immediately reflected in the output

b) change in the output occurs when state of the master is affected

c) change in the output occurs when state of the slave is affected

d)both the master and slave states are affected at the same time.

4. Choose the correct one by matching the item of Gr-1 and Gr-2

	Gr-1			Gr-2	
A.	Shift register		1.	Frequency divisi	on
В.	Counter		2.7	Addressing in me	emory chips
C.	Decoder		3. 5	Serial to parallel	data conversion
	a)A-3,B-2,C-1	b)A-3,B-1,C-2	c)A	-2,B-1,C-3	d)A-1,B-2,C-3

5. The number of flip-flops required for a MOD-10 ring counter is

a) 4	b) 10	c) 5	d) none of these
<i>ω</i> , ι	~, -0	0,0	

6. The number of flip-flops requi	ired for a MOD-10 Joh	nson counter is			
a) 4	b) 10	c) 5	d) none of these		
7. Latch is a memory cell of					
a) 1 bit	b) 2 bit	c) 3 bit	d) none of these .		
8.The initial output Q of SR f/f is 0.It changes to 1, when clock pulse is applied.The input S-R will be:					
a) S=0,R=0	b) S=0,R=1	c) S=1,R=0	d) S=1,R=1		
9.Mod-2 counter followed by Me	od -5 counter is				
a) Mod -7 counter	b) Mod -3 counter	c) Decade counte	er d) Mod -9 counter		
10.4 bit Ripple counter counts u	pto				
a)4	b) 12	c) 16	d) 15		
11.Master slave f/f is to					
a)increase clock rate	b)reduce	e power dissipation			
c)eliminate race around	d condition d) impro	ove reliability			
12. The output frequency of a de	ecade counter clocked	from a 50khz signal is			
a)50Khz	b)500Khz	c)5Khz	d)25 Khz		
13. 10 MHZ signal is applied to a be	MOD-5 Counter follow	wed by MOD-8 counte	r. The output frequency will		
a) 10 kHz	b) 2.5 kHz	c) 5 kHz	d) 25 kHz.		
14. An SR latch is					
a)Combinational circuit	b) sequential circu	uit c) one bit	memory element		
15. Race around occurs					
a) when J=K=0	b) J=K=1 c)	J=0 K=1 d) J=1,K	=0		
16. The condition to avoid race a	around is				
a) $T_{clk} < t_{pw} < t_{pdff}$	b) t _{pdff} < T _{clk} <	t _{pw} c) t _{pw} < t _p	_{dff} < T _{clk}		
17. The slave F/F of Master Slave F/F is					
a) level triggered	b) edge triggered	c) no triggered			

18. A single bit memory device is

	a)register	b) Flip flop	c) coun	ter	d)none				
19. The r	19. The modulus of a counter is								
	a) actual number of s	n number of states							
	c) number of flip-flop)		d) number o	of clock pulse				
20. A decade counter counts upto									
	a)9	b) 10	c) 11		d) 12				
21. How	many Flip-Flops are re	equired for mod–16 cou	nter?						
	a) 5	b) 6	c) 3		d) 4				
Short Qu	estion [Type-2]				[Maximum marks: 2]				

1. What is flip-flop?

2. What are differences of Synchronous and asynchronous counter?

3. The following binary values were applied to the X and Y inputs of the NAND latch shown in the figure in the sequence indicated below:

X=0,Y=1; X=0,Y=0; X=1,Y=1

What will be the corresponding stable P,Q outputs ?

4. Explain race around condition of J-K flip-flop.

5. What do you mean by the asynchronous inputs of a flip-flop?

6. What is main differences between latch and flip-flop?

Subjective question [Type-3]

- 1. Show how race around can be avoided.
- 2. Convert this flip flop into D flip flop:

3. What is edge trigger flip-flop and why is it required ? What is differences between edge triggered and level triggered flip-flop?

- 4. Design a ripple counter with explaining the timing diagram.
- 5. Design a Ring counter with 4 state.
- 6.Expalin the working principle of Parallel-In-Serial-Out register.
- 7.Design a bidirectional shift register with diagram.
- 9. Explain JK flip flop with a neat diagram.
- 10. Explain how a counter can be used as frequency divider with a proper example.

Broad Question [Type-4]

[Maximum marks: 5]

- 1. Convert S-R flip-flop to J-K and R flip-flop respectively.
- 2. Design a MOD-6 synchronous counter using JK flip flop and D flip-flop.
- 3. Design a sequential circuit using D flip-flop that implements the following state diagram:

- 4. What is a Shift Register? What are its various types? List out some applications of Shift Register.
- 5. Explain how a shift register can be used as a ring counter giving the wave forms.
- 6. Realize a 4 bit ring counter and develop the state table.
- 7. Design a 4bit twisted ring counter and find out the number of unused state.

Question Paper Details						
Course	Stream	Semester	Subject	Paper Code	Chapter	
B.TECH	ECE	4 th	Digital	EC-402	4	
			Electronics &		ADC AND DAC	
			Integrated		Techniques, Logic	
			Circuits		families	

	Paper Setter	r Details	
Name	Designation	Mobile No.	Email ID
SALINI BOSE	Assistant Professor	8777498093	Saline.bose@gmail.com
MCQ [Type-1]			[Maximum marks: 1]

c) MOS

d) TTL

1.Which family has the better noise margin?

b) DTL

d) ECL	D) DIL	C) TTL	u) 1005

3.The faster ADC is

a)ECL

a)Dual slope type	b) SAR type	c) counter type	d) none
-------------------	-------------	-----------------	---------

4. The faster logic gate family is

a)CMOS	b) ECL	c) TTL	d) RTL

5. A Darlington emitter -follower circuit is sometimes used in the output stage of a TTL gate in order to

a) increase its I_{OL} b) reduce its I_{OH} c) increase its speed of operation d) reduce power dissipation

6. Commercially available ECL gears use two ground lines and one negative supply in order to

a) reduce power dissipation b) increase fan out

c) reduce loading effect d) eliminate the effect of power line glitches or the biasing circuit

7. An NMOS circuit is shown in the above figure. The logic function for the output is

+Vdd						
		Output				
	B ← → │ └─┘ └─┘ ├→ ↓ └── ↓ ↓ ↓ ↓	C → F				
a)(A+B)'C+D'E'	b) (AB+C')(D'+E)	c)A(B+C)'DE	d)(ABCD)'			
8. What will be the value of	current in DAC circuit us	ing inverted OP-AMP,wh	ere V_R =10V and R=10Kohm			
a) 31.25 μA	b) 62.5 μA	c) 125 μA	d)250 µA			
9. A 10 bit A/D converter is u value of the maximum peak	ised to digitize an analog to peak ripple voltage th	g signal in the 0 to 5V rar nat can be allowed in the	nge.What is the approximate dc supply voltage?			
a)100mV	b) 50mV	c) 25mV	d) 5 mV			
10. The resolution of a 4 bit ADC will be	counting ADC is 0.5 V.Fo	or an analog input of 6.6 v	volts,the digital output of the			
a)1011	b)1101	c) 1100	d) 1110			
11. An 8bit successive appro converstion time for an anal	ximation analog to digita og input of 1V is 20 μs.1	al converter has full scale The conversion time for a	e reading of 2.55 V and its a 2V input will be			
a)10µs	b) 20 μs	c) 40 µs	d)50 μs			
12. The number of comparat	ors in a 4 bit flash ADC i:	S				
a)4	b) 5	c) 15	d) 16			
13.The output of TTL gate is	taken from a BJT in					
a)totem pole and common collector configuration						
b)either totempole or open collector configuration						
c)common base configuration						
d) common collector	d) common collector configuration					
14. What is the full form of T	TL?					

a) Tansient Transistor Log b) Transistor Transistor Logic c) Tripple Transistor Logic d) Tristate Transistor Logic

Short Question [Type-2]

[Maximum marks: 2]

1. What is the largest value of output from an 8-bit DAC that produces 1.0V for a digit input of 00110010?

2. Define resolution of a DAC wih an example.

3. Define the terms a) Set up time b) Hold time C) fan out d) Power dissipation

Subjective question [Type-3]			[Maximum marks: 3]	
1. Write a short note on:				
a)R2R Ladder type DAC	b) TTL	c) Dual slope ADC	d) Successive	

approximation ADC e)Counter type ADC

2. A 6 bit DAC has step size 50mV. Determine a full scale output voltage and resolution.

3. Describe CMOS inverter and state advantages of CMOS.

4. A 6-bit Dual Slope A/D converter uses a reference of –6V and a 1 MHz clock. It uses a fixed count of 40 (101000). Find Maximum Conversion Time.

5. Define fan out. Which factor is responsible for the limit of fan out in TTL circuits?

6. Implement the function (AB+CD)'

Broad Question [Type-4]

[Maximum marks: 5]

1. Draw the circuit diagram of a two input TTL NAND gate and label component values and write the function table.

2. Implement F= (A+B)(C+D) using CMOS, NMOS and PMOS.

3. With the help of R-2R binary network, explain the working of a 3-bit D/A converter and derive

an expression for the output voltage.

4.Explain the operation of ECL with diagram.

-----END------END------